Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa.
نویسندگان
چکیده
The C-class MADS box gene AGAMOUS (AG) plays crucial roles in Arabidopsis thaliana development by regulating the organ identity of stamens and carpels, the repression of A-class genes, and floral meristem determinacy. To examine the conservation and diversification of C-class gene function in monocots, we analyzed two C-class genes in rice (Oryza sativa), OSMADS3 and OSMADS58, which may have arisen by gene duplication before divergence of rice and maize (Zea mays). A knockout line of OSMADS3, in which the gene is disrupted by T-DNA insertion, shows homeotic transformation of stamens into lodicules and ectopic development of lodicules in the second whorl near the palea where lodicules do not form in the wild type but carpels develop almost normally. By contrast, RNA-silenced lines of OSMADS58 develop astonishing flowers that reiterate a set of floral organs, including lodicules, stamens, and carpel-like organs, suggesting that determinacy of the floral meristem is severely affected. These results suggest that the two C-class genes have been partially subfunctionalized during rice evolution (i.e., the functions regulated by AG have been partially partitioned into two paralogous genes, OSMADS3 and OSMADS58, which were produced by a recent gene duplication event in plant evolution).
منابع مشابه
Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa W OA
Takahiro Yamaguchi,a1 Dong Yeon Lee,b Akio Miyao,c Hikohiko Hirochika,c Gynheung An,b and Hiro-Yuki Hiranoad2 a Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan b Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea c National Institute of Agrobiological Sciences, Kannondai...
متن کاملFunction and diversification of MADS-box genes in rice.
MADS-box genes play critical roles in a number of developmental processes in flowering plants, such as specification of floral organ identity, control of flowering time, and regulation of fruit development. Because of their crucial functions in flower development, diversification of the MADS-box gene family has been suggested to be a major factor responsible for floral diversity during radiatio...
متن کاملMolecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)
Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...
متن کاملGenetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy.
Grass plants develop unique floral patterns that determine grain production. However, the molecular mechanism underlying the specification of floral organ identities and meristem determinacy, including the interaction among floral homeotic genes, remains largely unknown in grasses. Here, we report the interactions of rice (Oryza sativa) floral homeotic genes, OsMADS3 (a C-class gene), OsMADS13 ...
متن کاملFunctional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes.
MADS box transcription factors controlling flower development have been isolated and studied in a wide variety of organisms. These studies have shown that homologous MADS box genes from different species often have similar functions. OsMADS18 from rice (Oryza sativa) belongs to the phylogenetically defined AP1/SQUA group. The MADS box genes of this group have functions in plant development, lik...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2006